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Electron Correlation  
and Plutonium Phase Diagrams 

 
 
A. C. Lawson*, Joyce A. Roberts*, Barbara Martinez*  
and James W. Richardson, Jr†  
 
 
1. INTRODUCTION 
 

Phase diagrams of plutonium metal are astonishingly complicated.  The main feature 
is a sequence of crystallographically complex phases.  Temperature, pressure and 
alloying shift the stability of these phases rapidly, so that pressure and alloy phase 
diagrams are also complicated.  Another feature of the plutonium phase diagrams is the 
anomalously low melting point.  How these two features, crystallographic complexity 
and low melting point, work to determine complicated phase diagrams is shown in Fig. 1.   
This figure, which is a composite of the relevant binary diagrams, shows that 
crystallographic complexity and low melting point are nearly exactly coincident.  Such 
behavior is unique to the light actinides.  It is natural to seek the source of this behavior 
in the collective properties of the 5f electrons, and in this paper we will trace some of the 
paths we are following in this search.  

Fig. 2 shows the linear thermal expansion of unalloyed Pu metal.  As the temperature 
is raised, there is a progression of phases from low symmetry to high symmetry as the 
melting point is reached.  The α- and β-phases are monoclinic, the γ-phase is 
orthorhombic, the δ-phase is FCC and the ε-phase is BCC.  The δ′-phase is a transitional, 
tetragonal phase.  A number of surprising features are apparent from this plot.  First, the 
crystallographic complexity of the low temperature phases is unmatched by any other 
element: the α- and β-phases have 16 and 34 atoms per cell, respectively.  This 
crystallographic complexity seems to be connected to the tendency of Pu to form 
intermetallic compounds with itself, the so-called “self-intermetallic” compounds 
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Figure 1.  Composite phase diagram of the light actinides.  Reprinted from J. Less-Common Metals, Vol. 90, J. 
L. Smith and E. A. Kmetko, Magnetism or bonding: a nearly periodic table of transition elements, pages 83-88, 
copyright 1983, with permission from Elsevier Science. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Linear thermal expansion of plutonium metal compared to that of aluminum.  (Figure used by 
permission of Los Alamos Science.) 
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Figure 3.  Pressure–temperature phase diagram of unalloyed Pu metal.   Reprinted from J. Physics F., Vol. 6, E. 
A. Kmetko and H. H. Hill, Anomalous melting of f-electron metals (with attention to Pu), pages 1025-1037, 
copyright 1976, with permission of the Institute of Physics.  

 
(Lawson et al., 1996) or to another, probably equivalent, tendency toward structural 
complexity in narrow band materials (Söderlind et al., 1995, Söderlind, 1998, Hecker, 
2000, and Baskes, 2000).  Second, the FCC δ-phase has a surprising negative thermal 
expansion.  Third, as noted, the melting point is surprisingly low, with a volume decrease 
at the melting point.   

This multiplicity of crystallographically stable phases leads to complex phase 
diagrams, some of which will be displayed in the next section, and a few features of 
interest will be pointed out.  The following section will discuss some aspects of disorder 
(or short range order) that may be expected in Pu phases.  After that, we will discuss the 
special case of vibrational disorder and present some measurements of the Debye-Waller 
factors of the various phases in unalloyed Pu.  This leads to a discussion of the melting 
point of Pu, based on the Lindemann rule.  Finally, there is a discussion of the 
thermodynamics of Pu, which leads us back to the topic of phase diagrams.  At this point 
it is possible to make some contact with the topic of electron correlation. 

 
 

2. PU PHASE DIAGRAMS 
 

The pressure-temperature phase diagram of unalloyed Pu, based on the work of 
Liptai and Friddle (1966) and modified by Kmetko and Hill (1976), is shown in Fig. 3 
and reflects the complexity of the first two figures.  An additional feature is the ς-phase, 
stable only under pressure, whose structure is still undetermined.  Notice that the melting 
point is further depressed by pressure to a minimum at ~30 kbar, after which there is a 
gradual increase.  There is an extremely suggestive analogy between the pressure phase 
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diagram and the alloy phase diagrams that was originally put forward by Elliott.  The idea 
is that alloying with elements that stabilize the δ-phase (Ga, Al, Am, and some others) 
behaves like a negative pressure.  This analogy is shown in Fig. 4.  In this plot, the effect 
of alloying is shown with a phase diagram that is a composite of the Pu-Am (smaller 
solute) and Pu-Np (larger solute) diagrams.  The Pu pressure phase diagram, shown in 
mirror image, matches the Pu-Np diagram.   

 

 
Figure 4.  Composite alloy phase diagram for Pu-Np and Pu-Am.  The Pu-Np bears a strong resemblance to the 
pressure-temperature diagram of Fig. 3, which is shown in mirror image.  The Pu-Am diagram is similar to the 
Pu-Ga diagram.  (Figure used by permission of Los Alamos Science.) 

 
The Pu-Ga phase diagram is of technological importance, as a few percent Ga is 

found to stabilize the ductile FCC δ-phase.  The version of this diagram that was accepted 
in the US for a long time is presented in Fig. 5a and shows how the addition of Ga rapidly 
suppresses the low symmetry phases in favor of the ductile δ-phase.  Russian workers 
had believed that the δ-phase alloy is thermodynamically unstable at low temperatures, 
and their diagram is shown in Fig. 5b.  Hecker and Timofeeva (2000) tell the fascinating 
story of how consensus is being reached in a recent issue of Los Alamos Science.  It has 
been extraordinarily difficult to reach agreement on the true, equilibrium phase diagram, 
as the equilibration times exceed the time-scale of ordinary laboratory experiments.  For 
example, the eutectoid reaction in Fig. 5b has never been observed in neutron diffraction 
experiments, which typically have a duration of a few days.  
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Figure 5.  Alternative Pu-Ga alloy phase diagrams.  The diagram at left (5a) indicates stability for Pu-2 at. % 
Ga at low temperatures, while the diagram at right (5b) shows eutectoidal decomposition of the alloy.  (Figure 
used by permission of Los Alamos Science.) 
 

3. PU DISORDER 
 

The structure of an ordered, crystalline material is correctly given by specifying the 
space group and atomic positions of the atoms.  But perfectly ordered, crystalline 
materials do not exist in nature.  Atomic positions may not be fully occupied, 
stoichiometric disorder or local atomic displacements may occur in alloys, and even in 
the purest materials, thermal vibrations will introduce deviations from perfect, periodic 
symmetry specified by the crystal space group.  Deviations from perfect order are in 
principle observable as diffuse scattering.  In practice, however, the diffuse scattering 
may be too small to be observable, even when the underlying disorder is large enough to 
be of theoretical significance.   In addition one should heed the warning given by 
Welberry and Butler (1994) that the relationship between observed diffuse scattering and 
the underlying disorder is complicated and often counterintuitive.   

As a specific example, let us consider an alloy Pu-2 at. % Ga.  According to the 
phase diagrams that we have presented, this material contains enough gallium to exhibit 
the FCC crystal structure over a wide range of temperatures: from 450˚C down to either 
the lowest temperatures (Fig. 5a) or at least to 100˚C  (Fig 5b).  The structure of this alloy 
is usually presumed to be “disordered” FCC.  This means that 2% of the Pu sites in the 
structure are occupied by gallium.  Since the occupation is assumed to be random, the 
probability of occupation of any site by gallium is 2%, independent of the occupation of 
neighboring sites.  However, this assumption of independence need not be fulfilled 
exactly, as the Ga occupation of any site may influence the occupation of neighboring 
sites, and the occupation of gallium is then correlated.  This correlation, described by the 
well-known Cowley order parameters, can be positive or negative, so that the gallium 
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atoms may be thought to attract or repel each other, respectively (Warren, 1969).  
Whatever the state of correlation in Pu-2 at. % Ga, it is unobservable by x-ray or neutron 
diffraction, as the signal from only 2% solute is actually invisible in a practical 
experiment.  (The classic example of the observation of such correlation is disordered 
Cu3Au.)   In fact, for neutron diffraction experiments discussed in this paper, the 
correlation is unobservable for an additional reason, namely that the neutron scattering 
cross sections for 242Pu and for Ga are nearly identical.   

In a Pu-Ga alloy, the Ga atoms are much smaller than the Pu atoms: the atomic radii 
are 1.4 and 1.6 Å, respectively.  We can therefore anticipate that the structure will be 
disordered by the random displacement of the Ga atoms.  If the Ga occupancies are 
correlated, as discussed in the previous paragraph, then the displacements might also be 
correlated, and diffuse scattering will be expected.  However, in the case of Pu-2 
at. % Ga, the expected scattering is again too small to be observed.  

It is clear that crystal diffraction techniques are relatively insensitive to short-range 
order because the strength of the signal from the periodically ordered crystal swamps the 
relatively less intense diffuse scattering from the short-range order.  The complementary 
EXAFS technique, which is sensitive to short-range order only, has been producing 
interesting results (Conradson, 2000) that are so far not completely understood.  

 
 

4. PU VIBRATIONS 
 
4.1 Vibrational Correlations 
 

In every solid, the atoms vibrate.  The motions of the atoms are given by the lattice 
dynamics, which can be calculated if the interaction between the atoms is known with 
sufficient accuracy.  In favorable cases, the motions of the atoms can also be determined 
experimentally by inelastic neutron scattering.  A case can be favorable if a single crystal 
is available; this is not currently the case for Pu-2 at. % Ga. 

The existence of the atomic vibrations affects the result of a diffraction experiment in 
three ways.  By far the largest effect is the attenuation of the Bragg reflections according 
to the Debye-Waller factor 

 ><−=
22

0
ukeII  (1) 

 
where <u2> is mean-square vibration amplitude of the atom, averaged over all atoms, all 
frequencies and all directions.  <u2> can be calculated according to the Einstein model of 
lattice vibrations, which assumes that each atom vibrates independently of all the rest.  
This is a good model for the behavior of the Bragg intensities, and it is used routinely for 
the fitting of experimental diffraction data.  The determination of <u2> vs. temperature 
data can be used to determine the Debye-Waller temperature, ΘDW, as a function of 
temperature (Lawson et al., 2000a).  ΘDW is expected to be much more independent of 
temperature than is the heat capacity Debye temperature, ΘD, because its moment of the 
phonon spectrum shifts between -1 and -2 between low and high temperatures, while that 
of ΘD shifts between -3 and +2 (Grimvall, 1999), and the second moment has hardly any 
temperature dependence at all at high temperatures (Lovesey, 1984).  Experimentally, 
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there is a good experimental correspondence between the values of ΘD and ΘDW 
measured at low temperatures (Lawson et al., 2000b) 

But the atomic motions are in fact correlated, and this gives rise to diffuse 
scattering. The diffuse scattering can be calculated if a lattice dynamical model or 
measured phonon spectrum is available.  If an exact calculation of the diffuse scattering 
is not possible, a good approximation is provided by the Debye model, which is based on 
a continuum approximation for the lattice dynamics.   This turns out to be a good 
approximation to the correlation that is actually observed. 

Fig. 6a shows a diffraction pattern of unalloyed δ′-Pu at 465ºC.  The data have been 
fit by Rietveld analysis, and the tetragonal δ′ structure is confirmed.  The error curve 
displayed below the data shows very clearly an oscillatory background due to vibrational 
correlations that have not been accounted for in the analysis.  Fig. 6b shows the same data 
fitted with the δ′ structure but with the background fitted with a series of oscillatory terms 
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This function is an approximation to the thermal diffuse scattering for δ′-Pu at 465ºC.  
The Ai’s, which are fit by Rietveld analysis, represent the correlation corrections to the 
Debye-Waller factor (which in turn represents the Einstein model). 

The effect of vibrational correlations on the structure of a material can be represented 
by the pair distribution function, or PDF (Egami, 1998, McQueeney, 1998).  The PDF is 
a one-dimensional plot of the density of atomic pairs in real space.  Each peak in the PDF 
contains N(R) pairs at neighboring distance R, given by the integral 

 
    ∫=

peak

drrrRN )(4)( 2 ρπ . (3) 

 
A “synthetic” PDF can be constructed from knowledge of the crystal structure.    For 

each neighbor distance, one adds to the PDF a Gaussian term whose normalization gives 
the correct number of neighbors at that distance and whose width gives the vibrational 
correlation (including the autocorrelation).  For each peak, the correlation can be found in 
one of three ways.  At the lowest level of approximation, based on the Einstein model of 
independent atomic vibrations, one can use simply the width measured by the Debye-
Waller factor.  At this level of approximation, all the peaks in the PDF have the same 
width, which represents the autocorrelation.  At the next level of approximation, the 
Debye model gives 
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where kD is the Debye wavenumber, which depends only on the atomic density (Warren, 
1967).  The Debye model includes interatomic correlations calculated on a continuum 
model of the solid.  A third, and even better level of approximation may be obtained by 
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measuring the correlation corrections individually for each R by Rietveld analysis 
(Lawson, 2000b), as was done in Fig. 6.  The Einstein approximation becomes exact for 
large enough R, e.g. ∼20 Å, as the interatomic correlations fall off with distance.  In 
principle, the correlation atomic motions produce shifts in the peak positions of the PDF, 
and distortions of the Gaussian peak shape, but these are generally too small to be 
determined within the limits of resolution set by the Nyquist theorem, π/Qmax, where Qmax 
is the maximum scattering wave number of the measurement, say about 25Å-1.  The 
limitation to a Gaussian peak shape centered on fixed crystallographic distance could be 
relaxed with an extended model for the correlation corrected PDF.  
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Figure 6.  Rietveld fits of diffraction patterns for δ´-Pu.  The upper pattern (6a) is fit without correlation 
correction and the lower pattern (6b) includes only the first two terms of correlation correction.  The crosses are 
the data, the line through the crosses is a fit to the data, and an error curve is shown below each pattern.  Two 
sets of tic-marks indicate the allowed reflections for δ´-Pu (below) and for the vanadium radiological 
containment (above). 
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An entirely different approach is to use Fourier transformation of the diffraction data 
to construct the entire PDF (Egami, 1998).  This procedure gives the correct vibrational 
correlations, but places rather high demands on the quality of experimental data.  As an 
example, consider the vibrations of Pb at two different temperatures, 300K and 50K.  Fig 
7 shows the PDF constructed from the Einstein, Debye and correlation correction 
methods compared with the experimentally determined PDF obtained by Fourier 
transformation.  As expected, the peaks of the PDFs at 300K are broader, reflecting the 
larger thermal motion at that temperature.  The various PDFs are generally in good 
agreement, except that the PDF based on the Einstein model overestimates the peak width 
at small R.  The experimental PDF is noisier than usually obtained from this kind of 
work, because data were collected for only a few hours.  Also we have not applied any 
corrections for sample container scattering, multiple scattering or absorption, or any 
Placzek corrections.  The normalization of this PDF is based on the Reitveld scale factor 
and had to be adjusted upward by 20% to get the correct number of atoms under the PDF 
peaks (in other words, to agree with the PDFs obtained by other methods).   The plot 
under the PDF curves shows the difference between the correlation corrected PDF and 
the Debye PDF.  This difference is significant, but small.   

Dimitrov et al. have proposed a method for extracting the phonon spectrum from 
powder diffraction data by matching the PDF obtained by Fourier transformation to that 
derived from a model phonon spectrum.  Good agreement with experimentally 
determined phonon dispersion curves has been obtained for Ni and for CaF2.  In view of 
the close agreement with the experimental PDFs for Pb (obtained either by Fourier 
transformation or by the correlation correction method) with the PDFs estimated by the 
Debye model, it would appear that experimental PDFs must be very accurate for this 
method to succeed.  This is because the difference between a realistic phonon spectrum 
and one based on the Debye model (very unrealistic) must depend on the difference 
between experimental PDF and the synthetic PDF based on the Debye model.  As we 
have shown, this latter difference is small.  

As a further check on this point, we have compared the PDFs calculated from Monte 
Carlo simulations of Al and Pb under the assumption of nearest-neighbor forces.  The 
nearest-neighbor model is not expected to produce an accurate prediction of the real 
metal, but it has the great advantage that the nearest neighbor force constants depend only 
on the single crystal elastic constants.  Fig. 8 shows the anisotropic Young’s modulus for 
Al, Ni, Pb and Ga-stabilized δ-phase Pu.  (For the first three, data are from Kittel, 1996, 
and for Pu, from Ledbetter and Moment, 1976).  Pb has a high elastic anisotropy, while 
Al is nearly isotropic.  We can therefore investigate how the elastic anisotropy is 
reflected in the correlation correction that must be applied to the Einstein PDF.  As 
shown in Fig. 9, the correlation correction for Pb is very similar to that of Al, and both 
are similar to that expected from the Debye model.  One concludes from these results that 
the PDFs must be measured and analyzed with extraordinary accuracy and that the results 
of the Dimitrov method may be highly susceptible to experimental error.  Very recently 
(2001), Reichardt and Pintschovius have drawn similarly pessimistic conclusions.   

It would be a considerable advantage to know the phonon spectra of the various 
phases of Pu so that the vibrational free energies can be calculated directly.  PDF 
experiments on δ-phase Pu have been undertaken in an attempt to get the phonon 
spectrum for this phase without the difficulty of growing a single crystal (Lashley et al., 
2000).  The discussion given here may argue in favor of growing a single crystal after all. 
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Figure 7.  Pair Distribution Functions (PDFs) for lead at 300K (upper panel) and 50K (lower panel).  The 
circles represent the PDF derived from Fourier transformation of the data.  The solid line is the correlation-
corrected PDF and the dashed line in the Einstein PDF.  The curve under the full PDF is the difference between 
the Debye PDF and the correlation corrected PDF.    
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Figure 8.  Young’s modulus versus crystal direction for Al, Ni, Pb and δ-phase Pu.  The scales are arbitrary.   
 

 
Figure 9.  Normalized correlation <u0un>/<u0

2> versus normalized distance (Rn/a0) for two Monte Carlo models 
(Pb and Al) and for the Debye model.   
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4.2 Debye-Waller Factors of Unalloyed Pu. 
 
Fig. 10 shows a plot of <u2> versus temperature for all the phases of unalloyed Pu.  

These data were obtained on the General Purpose Powder Diffractometer at IPNS 
 (T ≥ 300K, Lawson et al., 1998, 1990) or on the High Intensity Powder Diffractometer at 
LANSCE (T < 300K, Lawson et al., 1992, 1993, Kwei et al., 1998).  Because the 
temperature range of the data was small for most of the phases, we fit only ΘDW to the 
data, except for the α-phase).  The errors in the fitted ΘDWs are less than 1K for β- 
through ε-phases and about 10K for α.  (See Lawson et al., 1994, for details of the fitting 
process.)  There is nothing in the <u2> curve that correlates with the negative thermal 
expansion of the δ-phase.  For each phase, the ΘDW is proportional to the inverse square 
root of the slope of the <u2> vs. temperature curves, and the ΘDWs are listed in Table 1 
together with some values obtained from heat capacity and ultrasonic methods.  The 
ΘDWs are plotted in Fig. 11 together with a plot of ΘDW for Pu-2 at. % Ga from Lawson et 
al. (2000a) for comparison.  The ΘDWs decrease with increasing temperature: such a trend 
is required for phase stability and is very similar to that in the alloy, except that there is a 
big jump between the ΘDWs of α- and β- Pu. 

 
Figure 10.  <u2>  versus temperature for all the phases of unalloyed plutonium metal. 
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Figure 11.  Debye-Waller temperatures for unalloyed Pu compared to those for Pu-2 at. % Ga 

 
 

 TABLE 1.  Values of Θ for the phases of Pu. 

a this work 
b Lawson et al. (2000a) 
c Lee et al. (1970) 
d Sandenaw (1960) 
e Ledbetter and Moment (1976) 
f Taylor et al. (1965) 
g Wallace (1998) 
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5.  PU  MELTING  
 

One of the many remarkable physical properties of plutonium metal is its low 
melting point, as shown in Fig. 1.  A few years ago, we showed that this observation 
could be rationalized with the Lindemann melting rule because the elastic properties (the 
Debye-Waller temperature, ΘDW) are strongly temperature dependent.  The elastic 
stiffness decreases strongly with temperature as had been shown much earlier by 
ultrasonic measurements by Taylor et al.  In fact, the ΘDWs obtained by measurement of 
Debye-Waller factors are in quite good agreement with those obtained by ultrasonic 
measurement, as shown in Fig. 12. 

The Lindemann rule states that a material melts when its vibrational amplitude is 
roughly equal to 10% of the interatomic distance.  The vibrational amplitude at any 
temperature can be expressed in terms of the Debye temperature,  ΘDW.  If ΘDW is 
temperature dependent, as it is for Pu, it should be evaluated at the melting point.  A 
convenient form of the Lindemann rule is 

 

 2

223/2

3h
fkMT meltB

c
ΘΩ

= , (5) 

 
which suggests the plot of Tm/MΩ2/3 vs Θmelt

2  that is given in Fig. 13.  This plot suggests 
the validity (with limited accuracy) of the Lindemenn rule.  The trick is to evaluate Θ at 
the melting point, and we have used Θ = Θ0 + cT, as suggested by Fig. 12, together with 
single crystal elastic data or Debye-Waller factor measurements.  Then Eq. 5 has the 
melting point on both sides, but can nevertheless be solved explicitly, as shown by 
Lawson et al. (2000a, 2000c).  The large (negative) value of c shown in Fig 14 gives a 
calculated value of the melting point that is in good agreement with the observed low 
melting point.   In fact, the value of –c for Pu is one of the largest in the periodic table.  
(Details are given in Lawson, 2001.)   

How can the atomic spring constants of Pu be temperature dependent?  The usual 
explanation has to do with lattice anharmonicity.  For an ordinary material, the thermal 
interatomic potential is asymmetric, and this asymmetry leads to thermal expansion.   As 
this material is heated, the interatomic separation increases, and the vibrational 
frequencies decrease through the Grüneisen equation of state:  

 

 

Gγ−









Ω
Ω

=
00ω

ω
 (6) 

 
where γG is the Grüneisen constant and Ω is the atomic volume.  γG’s are usually in the 
range of 1-3.  A linear decrease of ΘDW with temperature is then a natural consequence of 
thermal expansion.  But for Pu-2 at. % Ga, the thermal expansion is very small, and the 
Grüneisen effect cannot be important here.  Instead, it has been suggested that these 
materials undergo “harmonic softening” as the temperature increases, and this is assumed 
to be a purely electronic effect (Lawson et al., 2000a, Manley et al., 2001).  According to 
this suggestion, the large values of –c for the light actinides arise – at least in part – from 
harmonic softening.  
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Figure 12.  ΘDW and Θultrasonic versus temperature for δ-stabilized Pu alloys. 

   
 
Figure 13.  Normalized melting temperature (Tm/MΩ2/3) versus Θmelt, the Debye temperature at the melting 
point.  Ω is the atomic volume and M is the atomic mass.  Reprinted from Phil. Mag. B., 81:255 (2001), A. C. 
Lawson, An improved Lindemann melting rule, page 255, with permission from Taylor and Francis Limited, 
http://www.tandf.co.uk.   
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Figure 14.  Elastic anharmonicity, -c, defined by Θ = Θ + cT, versus atomic number.  Reprinted from Phil. 
Mag. B., 81:255 (2001), A. C. Lawson, An improved Lindemann melting rule, page 255, with permission from 
Taylor and Francis Limited, http://www.tandf.co.uk.   

 

Figure 15.  Normalized Debye temperature versus normalized lattice constant for Pb and δ-phase Pu-2 at. % 
Ga.   The parameter is T/Θ0.   
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The difference between anharmonic and harmonic softening is illustrated in Fig. 15, 
which shows plots of normalized Debye temperature, Θ/Θ0, versus the normalized lattice 
constant, a/a295K for Pb and for Pu-2 at. % Ga.  The data are from Lisher, 1976, and 
Lawson et al., 2000a, respectively.  For Grüneisen solids, such as Pb, the strength of the 
atomic spring constants is mainly volume dependent, but for the light actinides is mainly 
temperature dependent. (The data in this figure could not be used for the evaluation of γG, 
because the temperature is not constant.) 

Manley et al. (Manley, 2000 and Manley et al., 2001) have observed harmonic 
softening in polycrystalline α-U using inelastic neutron scattering over a wide range of 
temperatures.  Their results show a continuous softening of the phonon spectrum in the 
orthorhombic α-U phase as the temperature is increased.  

 
 

6. PU THERMODYNAMICS 
 

For ΘD independent of temperature, the vibrational heat capacity at constant volume 
is given by 

  
(7) 

 
 

and this formula is modified to 
 
 

(8) 
 

 
 
for the case of ΘD = ΘD,0 + cT.   In these equations, ΘD is the Debye temperature, rather 
than the Debye-Waller temperature; these are respectively based on the +2 and –2 
moments of the phonon spectrum (Grimvall, 1999).  To these terms must be added the  
“dilatation” term 

 
(9) 

 
 

and the electronic term, approximated by 
 
  (10) 
 
 

These models are evaluated and compared to the measured heat capacities in Fig. 16 
for Pb, α-Pu, δ-Pu and α-U, materials for which either good or at least marginal data are 
available (Pb: Pankratz, 1982; α-Pu: Lee et al., 1970; δ-Pu: Sandenaw, 1960; α-U: 
Holden, 1958).  There is an extra heat capacity contribution for α-U at high temperatures, 
and this has been seen in three different measurements.  This contribution has roughly the 
shape of a λ-anomaly, and the entropy under the heat capacity curve (Cp-Ctot) is Rln(1.6).  
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This may be a measure of the lattice softening seen by Manley et al.  Also unexplained 
are the enhanced values of Cp in the β- and γ-phases, and the fact that they are constant 
with temperature, rather than slightly increasing.  Data for the heat capacity of δ-phase Pu 
are marked by some kind of transient phenomenon – perhaps related to radiation damage  
– that has not received a satisfactory explanation.   Better data are required for evaluation.   

While the experimental situation is unclear for δ-Pu, it is obvious from the general 
agreement of Ctot with Cexp that the temperature dependence of the heat capacity ΘD for 
the two phases of Pu is much less than observed in the Debye-Waller factor ΘDW.  This 
apparent disagreement must be resolved by detailed measurements of the frequency 
dependence of the phonon spectra.  Manley’s work is a step in this direction.  

 
 

Figure 16.  Heat capacities for Pb, α-U, α-Pu and δ-phase Pu-8 at. % Al. 
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This becomes more than a textbook exercise when one considers all the uncertainties 
in actinide thermodynamics, and it may be a realistic way of determining the temperature 
dependence of the electronic term, which is certainly more complicated than Eq. (10) for 
the f-electron systems we are discussing.  

Wallace (1998) has made careful estimates of the thermodynamic functions of all the 
phases of Pu based on available thermodynamic data.  He finds it impossible to separate 
the “electronic” contributions from the “quasiharmonic” contributions, but the combined 
contributions from these terms is a significant part of the free energy.  This is shown in 
Fig. 17, which shows the vibrational and electronic plus quasiharmonic contributions 
estimated by Wallace.  It is clear that electron correlation terms could be important for 
phase stabilization, even if they make only a fractional contribution to the total energy.   

  

 
FIGURE 17.   Internal energies (left) and entropies (right) for the phases of unalloyed Pu 

 
 

7. CONCLUSIONS AND CONNECTIONS TO ELECTRON CORRELATION 
 

The energy and entropy curves for unalloyed Pu mark the extent of our progress 
toward an understanding of the phase diagrams presented at the beginning of the paper; it 
is clear that there is still a long way to go.  It would be desirable to evaluate the 
vibrational thermodynamic functions from measured phonon spectra.  However, this may 
require the growth of single crystals, if the PDF method using powder diffraction proves 
impractical for Pu.  The measurement of inelastic phonon densities of states from 
polycrystalline samples might be a practical method for all phases of Pu.   

Estimates of the electronic contributions to the thermodynamics have been derived 
from the work of Wallace (1998).  It would be of interest to compare these with 
theoretical estimates to evaluate the role of electron correlation in the phase stability of 
plutonium metal.  As emphasized by Wallace, this will be an “enormous challenge” to 
electronic structure theory.  In particular, we need a more predictive understanding of 
how narrow bands in Pu stabilize idiosyncratic crystal structures (Söderlind et al., 1995 
and Söderlind, 1998). 
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Finally we recall the role of electron entropy effects related to magnetism that shape 
the phase diagram of iron (Zener, 1967, and Kaufmann and Bernstein, 1970).  We should 
be alert for similar effects in plutonium. 
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